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Abstract

The computer vision field has undergone a revolution of sorts in the past five years.
Moore’s law has driven real-time image processing from the domain of dedicated, expensive
hardware, to the domain of commercial off-the-shelf computers. This thesis describes our
work on the design, analysis and implementation of a Real-Time Shape from Silhouette
Sensor (RT'S?). The system produces time-varying volumetric data at real-time rates (10—
30Hz). The data is in the form of binary volumetric images. Until recently, using this
technique in a real-time system was impractical due to the computational burden. In this
thesis we review the previous work in the field, and derive the mathematics behind volumetric
calibration, silhouette extraction, and shape-from-silhouette. For our sensor implementation,
we use four color camera / framegrabber pairs and a single high-end Pentium IIT computer.
The color cameras were configured to observe a common volume. This hardware uses our
RT'S? software to track volumetric motion. Two types of shape-from-silhouette algorithms
were implemented and their relative performance was compared. We have also explored an
application of this sensor to markerless motion tracking. In his recent review of work done
in motion tracking, Gavrila states that results of markerless vision based 3D tracking are
still limited. The method proposed in this paper not only expands upon the previous work
but will also attempt to overcome these limitations.
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1 Data Acquisition Introduction

1.1 Overview

Applications such as virtual reality, telepresence, smart rooms, human robot interaction,
automatic surveillance, gesture analysis, movement analysis for sports (and many others)
require real-time motion-tracking. Because of this enormous number of applications requiring
human-computer interaction, real-time 3D motion-tracking is an important problem. Much
work has already been done in this field, but has used systems where images are acquired
in real-time and processed later [30, 31]. However, offline processing does not permit real-
time interaction. Off-line systems provide greater accuracy, but we are willing to sacrifice
accuracy in order to achieve real-time performance.

There are a wide range of real-time motion tracking sensors currently in use. The most
common ones require the object or person being tracked to be instrumented in some fashion,
either through magnetic field sensors [33], wired optical emmiters [32] or passive optical
targets [35]. As 3D user interfaces become commonplace, it becomes imperitive to eliminate
encumbering wires, markers or sensors. We propose a technique that, until quite recently,
had computational and memory requirements that exceeded the capabilities of commonly
available computing systems. Our approach is called “Real-Time Shape-from-Silhouette.”
This approach will be described in detail in the first half of this report. The second half of
the report will focus on a unique capability that we have developed with this sensor to track
a kinematic model of a human using only the volumetric data derived from the sensor.

In his recent review of work done in human tracking, Gavrila states that results of mark-
erless vision based 3D tracking are still limited. In conclusion he lists several challenges that
must be resolved before visual tracking systems can be widely deployed [1].

1. The model acquisition issue: the majority of previous work assumes the 3D model is
known apriori.

2. The occlusion issue: most systems cannot handle significant occlusion and do not have
mechanisms to stop and restart tracking of individual body parts.

3. The modeling issue: few body models have incorporated articulation constraints or
collision constraints.

4. The ground truth issue: no systems have compared their results to ground truth.

5. The 3D data issue: few systems have used 3D data as direct input to their tracking
system. Using 3D data relieves the problems associated with retrieving 3D information
from a 2D-view [1]. In addition to Gavrila’s challenges we believe that there are two
other requirements for a tracking system to be readily deployed.

6. A system must also perform tracking in real-time to be useful for most applications.
7. Calibration of the data acquisition device must be simple and fast.

The method proposed in this paper not only expands upon the previous work but will
also attempt to meet these challenges. In this section we will cover the implementation of
our tracking system in detail. Our tracking system went through two major developments.

7
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Figure 1: Reconstruction from three 2D wviews. The intersection of three views (in a 2D
plane) results in a reconstruction that includes 1) the original object (red); 2) points in concavities
that are not visible from any viewpoint outside the convex hull of the object (green); and 3) points
that are not eliminated in at least one of the three given views (blue). Variations in the estimated
geomelry can occur when approzimating the shape with a visual hull. In general, the visual hull is a
super-set of the actual geometry, and is not equivalent to the true shape, due to the inability of the
shape-from-silhouette technique to resolve concavities. All of the algorithms we investigated return
the union of all of the colored regions as the reconstructed shape.

The first development only tracked the upper body dynamics of the subject. The second
development tracked the full-body kinematics of the subject. Accordingly this summary is
divided into two sections covering the development of each system. Within each system there
exist two main components. The first component initializes our model and the second tracks
the model. After discussing the development of our algorithm we will show how our system
provides visual feedback of the tracking to the user. Following that a brief summary of the
results for the current state of the project is provided. Lastly a synopsis of the tracking and
its contributions to the field of human tracking are listed.

1.2 Shape-from-silhouette Techniques

There has been much work in the area of shape-from-silhouette. One of the goals of this thesis
is to thoroughly investigate all aspects of using this method for real-time data acquisition.
The implementation of a Real-Time Shape- from Silhouette Sensor (RTS®) is contingent
upon three main concepts:

e camera calibration,
e silhouette extraction, and
e silhouette projection and intersection.

The problem of mapping 3D points in the world to a pixel in the image plane of the camera is
addressed by camera calibration. There are two sets of parameters that must be estimated.



The first are the intrinsic parameters, which model the optics of the camera. The second set
of parameters are the extrinsic parameters, which model the position and orientation of the
camera in three-space, relative to an external coordinate system. To accomplish the multi-
camera implementation of a shape-from-silhouette sensor, all cameras must be calibrated to
a common coordinate system.

Silhouette extraction is the process of identifying, in each image, those pixels which
have changed with respect to a background image. This process is also called background
subtraction or background differencing. We will describe commonly used methods, as well as
some novel techniques.

The process of silhouette projection and intersection uses camera models to project the
extracted silhouettes into a shared volumetric space, where their mutual intersection is com-
puted. Figure 1 shows the problems inherent in approximating a shape by its visual hull. The
visual hull is generally a superset of the actual shape due to the inability of the shape-from-
silhouette technique to resolve concavities. To quote an eminent computer vision researcher,
“You can’t see what is not visible” -Takeo Kanade. Silhouette projection and intersection
can be accomplished using a variety of techniques. We will review some of those techniques
and will present an execution time analysis of two techniques which we implemented and
tested.

1.3 Why Do This in Real-Time?

There are many reasons to pursue a real-time implementation of shape-from-silhouette. First,
as computers begin to disappear into the walls and floors, new user interfaces will be needed.
Human gesture is a natural interface that can be exploited to allow people to interact with
these ubiquitous computer systems. However, human gesture is inherently three dimensional.
Therefore, we need a system that is capable of measuring gestural data in three dimensions.
A second reason for creating a system that works in real-time is the commercial demand
for marker-less motion tracking. Such a system would represent a substantial savings in
time and money and be more convenient for applications that currently use commercially
available tracking systems (e.g. Ascension Technologies’ “Flock of Birds” [32], the Polhemus
Fastrak [34], or Northern Digital’s Optotrak sensor [36]). Such a system could be applied to
the areas of virtual reality, human and animal motion tracking for special effects work, and
innovative video game interfaces.

With the advent of gigahertz computing and fast digital imaging interfaces, it is now pos-
sible to build an environment with embedded computer systems which can passively isolate
and track the motion and gesture of the occupants. Using this technique, we demonstrate
the ability to create a crude 3D approximation of the moving objects in an environment,
and track their motion. We will present our work in applying this sensor to the problem of
generating synthetic 3D views. We will also show results from a comparison of frame-rate
vs. volumetric resolution for two shape-from-silhouette algorithms which we implemented.

At the time of this thesis, only one other team has attempted to implement a shape-
from-silhouette sensor that functions in real-time, namely, Cheung and Kanade [7]. In their
work, ellipsoids provide a coarse model of the segments of the body. The focus of this thesis
is to reduce the hardware requirements of a system similar to the one they described, and to
improve its efficiency. In Chapter 2 we will provide an overview of past work in the area of
shape-from-silhouette. Technical details and early work in this area will also be presented.



Chapter 3 describes the implementation and architecture of RT'S?, and presents results from
experiments in silhouette extraction. Chapter 4 gives a run-time analysis of two algorithms
that were implemented on our system, and a brief overview of a novel application of this
technology. Conclusions are given in Chapter 5 and areas for future work are described in
Chapter 6.

2 History and Background of Shape-from-Silhouette

The background and history of shape-from-silhouette has its roots in three separate areas:
camera calibration, background subtraction (silhouette extraction) and volume intersection.

2.1 Camera Calibration

Camera calibration is well studied in computer vision [7, 8, 9, 10, 13, 14, 15]. Before computer
vision, it was extensively investigated in the field of photogrammetry [11, 12]. Calibration is
a necessary step in extracting 3D information from 2D images. Calibration techniques can be
classified into two categories: photogrammetric techniques and self-calibration techniques.
Self calibration techniques are less mature than photogrammetric techniques [10]. For this
reason, we used photogrammetric techniques.

Because we want to cover as large a volume as possible with the fewest number of cameras,
the RT'S? system uses cameras with extremely wide angle lenses. However, the 180° field of
view of fish-eye lenses is too large because key features are projected onto a very small number
of pixels. Typically, lenses in the systems we have reviewed have a field of view between 60°
and 90°. This requires a calibration technique that includes estimating the coefficients of
radial distortion. Tsai [7] showed how to analytically determine radial distortion parameters
for machine vision systems. If a camera with a narrow field of view is used it may not be
necessary to model radial distortion, as the camera will be well approximated by a pinhole.
The pinhole model is commonly used in systems that do not use wide angle lenses.

Ganpathy [13] explores calibration for cameras on a robot. However, this method is
limited because there is no way to achieve the matrix decomposition of the calibration if
radial distortion is considered. This is due to the nonlinearities inherent in the modeling of
the radial distortion. It is also desirable to use a calibration technique that relies on planar
calibration targets rather than 3D calibration targets. This allows for simple calibration
rigs (paper targets on glass or hard wood) that are easier to set up than 3D calibration
rigs. Such methods were found first in Wei et al. [8] and further developed in Zhang’s work
on EasyCalib [9]. We used the camera calibration functions implemented in the OpenCV
computer vision library [29], which are based on EasyCalib. Zhang demonstrated that the
EasyCalib algorithm was robust and easy to use. As a result, the implementation used in the
OpenCV library was also robust. A calibration filter application imlemented in the library
uses feature extraction algorithms to locate the black/white intersections of a checkerboard
in real-time, which speeds the process of collecting the data used in calibration.

Recovering three dimensional structure from images is very difficult without calibrated
images. For our purposes, a camera is said to be calibrated if the mapping between image
coordinates and directions relative to the camera center are known. However, the position
of the camera in space (i.e. its translation and rotation with respect to world coordinates)

10



Figure 2: Central projection. Projection of 3D point w=[X,Y, Z]T onto image plane at
S T
m=[z,y]

is not necessarily known. For an ideal pinhole camera delivering a true perspective image,
this mapping can be characterized completely by just four numbers, called the intrinsic
parameters of the camera. In contrast, a camera’s extrinsic parameters represent its location
and rotation in space relative to the world coordinate system. We can represent these two
sets of parameters with three coordinate systems:

e image coordinate system
e camera coordinate system
e world coordinate system

The camera coordinate system can be represented by a perspective projection, which can be
written as a linear mapping between two points in projective coordinates:

2 fF 0 00 )}f N ,
y|=10 —f 00 7 | where 7' = > y = B (1)
s 0O 0 10 1

and f is the focal length. This 3 x 4 projection matrix represents a map from 3D to 2D in
projective coordinates.

As shown in Figure 3, the two coordinate systems, (z',y') and (u/,v'), are related by a
translation and a reflection in one axis. We need to translate and invert the camera coordi-
nate system, (x',y') so that the origin of the image coordinate system (u’,v’) is transformed

11
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Figure 3: Camera coordinate space. p is the point where the optical azis intersects the camera
plane, and is often referred to as the principal point. This is the origin of the projective coordinate
system. The upper left corner is the origin of the image coordinate system

to the upper left corner. The image coordinate system needs to be scaled such that maxi-
mum values in the u and v axes correspond to the maximum pixel coordinates that can be
accessed in the video framegrabber. To accomplish this we modify the parameters of the
matrix in Equation 1.

To derive a new offset and scale for the image coordinate system, we need to define the
following terms:

N, - the number of pixels in the u axis of the camera image.
N, - the number of pixels in the v axis of the camera image.
U - the physical width of the CCD sensor element.

V' - the physical height of the CCD sensor element.

These parameters can be combined into two parameters, (k,,k,), which are scale factors
which take into account the size and resolution of the CCD.

N, Ny

(kUakv) = (77 7)

Using these scale factors, we can relate the origin of the camera coordinate system, [z, yO]T,
to the image coordinate system, [ug, vy]", using the following relationship:

(W', 0") = (k2 + pu, kot + Do) (2)

12



The optical axis intersects the camera plane at p. The point (p,,p,) is the coordinate
location of p in image coordinates, and is often referred to as the principal point. We now
have enough information to define the projection in terms of the image plane with an origin
at [u,v]” and a maximum coordinate value of (N,, N,). We define four parameters to model
the projection:

(pu, py) - the coordinates of the the center of projection, in image coordinates with origin
(’LLO, UO) .

fky, - the scaled focal length for u in pixels.

fk, - the scaled focal length for v in pixels.

Once these four parameters (i.e the intrinsic calibration parameters) are known, the camera
is said to be calibrated. A calibrated camera can map pixels in the image to rays in three
dimensional space and three dimensional points to pixels in the image. From these values
we can form the intrinsic projection matrix, A, which is often called the camera calibration
matriz.

fke 0 p, O
A=| 0 —fky, p» O (3)
0 0 1 0

The last coordinate transformation relates the camera and world coordinate systems. The
extrinsic parameters can be represented by a rotation matrix R and a translation vector t:

Ty Ty T3 ty
R = Ty Ty Tg y t= tg (4)
7 Ty T9 t3

which can be combined into a homogeneous 4 x 4 transform,

re Tre T3t

| ra 15 T 12
T= r Trg T9 t3 (5)
0O 0 0 1

We can now represent the projection of an arbitrary three dimensional point in the world
coordinates, w, to a two dimensional point in camera coordinates, m, using the following
equation:

AR DI IIE
v = 0 —fky py 0O Lo (6)
s 0 0 1 0 r Trg T9 t3 A
— ~ 2 0 0 0 1 1

\
€1{

T

where (u',v") = (u/s, v/s).
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To derive the pixel coordinates on the image plane, v and v must be scaled by dividing by s,
the third element of the vector m. This is a scale factor which is derived from the distance
to the point, w, in camera coordinates.

The calibration of real cameras is often approximated with this four-parameter mapping,
though rarely is such an approximation accurate to within one pixel [9]. For most images
taken with standard lenses, the center of projection is at (or near) the coordinate center
of the image. However, small but significant shifts are often introduced in the digitizing
process. Such an image shift has the most impact on camera calibration for lenses with
shorter focal lengths (such as the ones we are using in our system). The focal lengths of the
camera in pixels can be estimated by dividing the marked focal length of the camera lens by
the width of the image on the imaging surface (the film or CCD array), and then multiplying
by the width and height of the final image in pixels. This scaling is modeled in Equation 2.

Real cameras deviate from the pinhole model in several respects. First, in order to collect
enough light to expose the film, light is gathered across the entire surface of the lens. The
most noticeable effect of this is that only a single surface in space, called the focal plane, will
be in perfect focus. In terms of camera calibration, each pixel corresponds not to a single
ray from the camera center, but to a set of rays from across the front of the lens which all
converge on a particular point on the focal plane. The second, and most significant effect, is
radial distortion caused by the lens. Because of constraints in the lens manufacturing process,
straight lines in the world imaged through real lenses generally become somewhat curved on
the image plane. However, since each lens element is radially symmetric, and the elements
are typically centered with high precision on the optical axis, this distortion is almost always
radially symmetric. As a result, the center of radial distortion also corresponds to the
intersection of the center of optical axis with the image plane. This point is the principal
point, (py, Py)-

We can model the distortion with a nonlinear geometric transform. Let (4, ?) be the true
position of pixel, (u,v), in the distorted image. Let (py, p,) be the center of the radial distor-
tion. Zhang [9] demonstrated that representing the radial distortion using a second degree
polynomial is good enough for most purposes and that using a higher order approximation
actually causes numerical instability. Therefore, we use a second order approximation here.
We can represent the geometric transform between the distorted and undistorted image
spaces as follows:

u+ (u— py) [k (u? + v%) + ko (u? + v?)?] (7)
v+ (v — py) [k (u? 4+ 7)) + ky(u® + v?)?] (8)

j=$3
|

[
Il

The coefficients k; and ky can be determined by measuring the curvature of straight lines
in sample images. Because our system uses very wide angle lenses, we have found intrinsic
camera calibration and estimation of radial distortion parameters to be a straightforward
process that considerably simplifies the problem of three dimensional reconstruction. By
using Equations 7 and 8 in conjunction with Equation 6, we can get pinhole projection
model that is corrected for radial distortion.

The calibration method presented by Zhang[9] estimates the intrinsic matrix and radial
distortion parameters by using a series of checkerboard patterns as shown in Figure 4. The
checkerboard represents a three dimensional rigid body that lies on the plane, Z = 0. The
interior corners of the checkerboard are located to sub pixel accuracy in a series of images.

14



Figure 4: Intrinsic calibration checkerboards with features automatically detected. This
figure shows the data that is used to estimate the intrinsic parameters. These are four consecutive
images of the checkerboard calibration object. The intersections are automatically located to sub-
pizel accuracy. This is the output from the calibration filter, which is implemented in the Open
Source Computer Vision library (OpenCV) [29].

Given the dimensions and the size of the checkerboard, the intrinsic parameters are solved for
using an iterative non-linear least squares method that successively estimates the intrinsic
matrix and the relative position and orientation of the checkerboards with respect to the
camera. During this process the extrinsic parameters of the camera are fixed at zero.

Once the intrinsic parameters have been determined, the same process is used to solve
for the extrinsic parameters. The intrinsic parameters are fixed at their best estimates,
and the extrinsic parameters are solved for by observing a common set of planar targets
and associating each 2D point with its 3D world coordinate. The number of points in the
planar calibration target must exceed the number of parameters that are being solved for.
In our case this is six: X,Y,Z,€;,Q, and €2,. This yields a set of linear equations where
the number of equations is greater than the number of unknowns. The targets we used are
the square black and white 2 x 2 checkerboards on the wooden platform in Figure 5. This
series of images shows a set of points in the zy plane (separated at a i inch resolution)
which are back-projected into the image at increasing heights through the volume. You
can see the radial distortion present in the images, as the grid appears to bow heavily at
the top of the volume. This type of back-projection can be accomplished only when the
extrinsic parameters have been determined. The extrinsic calibration process requires only
one image per camera. If all of the cameras extrinsic parameters are estimated by observing
the same planar points, we say the the cameras are calibrated with respect to the same world
coordinate system. If we use a checkerboard to calibrate the extrinsic parameters, then the

checkerboard must remain in the same static position while images from all of the cameras

15



Figure 5: Planar targets for extrinsic calibration. This series of images shows a set of
points in the zy plane (separated at a i inch resolution) which are back-projected into the image at
increasing heights through the volume. You can see the radial distortion present in the images, as
the grid appears to bow heavily at the top of the volume.

are acquired. However, the targets should span a large portion of the field of view for each
camera [9]. This means that the calibration checkerboards make poor targets for calibration
of multiple wide-angle cameras, unless the baselines between the cameras are small enough
that the checkerboard can occupy a large portion of all the camera images.

The only drawback to this calibration technique is that the numerical method for com-
puting the intrinsic parameters requires that there be no two images in the data set where
the checkerboards are related by a pure translation. In cases where this happens, the it-
erative process is numerically unstable and does not converge. A complete description of
this process can be found in Zhang [9], and an implementation can be found in the Open
Source Computer Vision Library [29], with optimized shared libraries for the Win32 and
Linux operating systems. The OpenCV library was used for the work in this thesis.

2.2 Background Subtraction

Background subtraction is a commonly used method for motion detection and silhouette
extraction. We describe a method that combines the best features of existing techniques
which are compatible with real-time performance.

Carlson [19, 20] and Davis [21] used only monochrome cameras in their systems. De-
pending on the environment, monochrome cameras can be adequate. Davis [21] designed
his imaging system to be used as a perceptual user interface (PUI) that monitors the user
performing a series of exercises. A projection screen shows the image of a drill sergeant who
yells at the user if he or she slows down. The user’s silhouette appears against the projection
screen. Interference with the projected image is mitigated through the use of infrared filters
on the cameras. This enables back-lighting using infrared light. This multispectral approach
is appropriate for these circumstances. In the first two papers by Carlson [19, 20], the back-

!'We highly recommend the distribution and use of the OpenCYV library in both the academic and com-
mercial computer vision communities due to the ease with which we were able to implement high level
functionality.
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ground subtraction algorithm first filters all images with a low-pass filter, and saves the first
image as a reference image. A threshold image, consisting of a separate threshold value for
each pixel, is initialized to a constant value. Both the reference image and the threshold
image are updated slowly over time. The reference image incorporates new image data by
averaging new images into the reference image at a rate specified by the user. The threshold
image is updated by incrementing or decrementing the initial threshold pixel values based
on their rate of change with respect to the current image. After a period of time, the slowly
updating threshold image will approximate the standard deviation of the video images over
time. In Davis’ paper [21], the image statistics are calculated during a training period during
which a mean background reference image and a standard deviation image are computed
directly. In all three papers the foreground images are differenced as shown in Algorithm 1.

Algorithm 1: Algorithm: Background Subtraction using Standard Deviation
for j < 1to N, do
fori<« 1to N, do
if (|current[i,j] - mean[i,j]|) > stdDev][i,j]) then
silhouettel[i,j] = 1
else
silhouette[i,j] = 0

end
end
end

In Davis’ work [21], because of the use of back-lighting, the problem of shadows was
negligible. Carlson [19, 20] did not address the problem of shadows. More specifically, their
Volumetric Video Motion Detector (VVMD) did not attempt to construct volumetric data
near the floor, where the problems of cast shadows is most severe.

Cheung and Kanade’s [4] goal was to accurately reconstruct human motion, so shadows
were a much larger concern for them. In addition to intensity they used color for extra
discrimination power. Rather than using image statistics such as the mean and standard
deviation, they used a complicated scheme which involved manually partitioning each image
into separate regions, which were then assigned different upper and lower intensity thresholds.
They also used color as a secondary means of differentiating foreground and background.
Their algorithm uses a lower intensity threshold (Iouer), an upper intensity threshold (Zypper),
and a hue angle difference threshold (AHypresn). It is described in pseudocode in Algorithm 2.

In Davis and Bradski [22], the algorithms are simple enough to run in real-time, but are
still interesting in the sense that they adapted a new technique to solve an old problem. Like
Carlson [19, 20], they used simple image statistics as reference images, but they also used a
combination of morphological processing, contour extraction and filling algorithms to fill the
small holes that are pervasive in silhouette images. This approach is interesting because it
substantially eliminates the problems that occur when holes in the silhouette are projected
through the visual hull. This problem, in particular, causes large gaps in the construction of
the visual hull. Because the calculation of motion template gradients (first defined in Davis’
paper [21]) is not affected by changes in the total area of the silhouette, they were free to
use morphological filtering to fill small holes in the silhouette. For our work morphological
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Algorithm 2: Algorithm: Background Subtraction using Hue Difference
for j« 1to N, do
fori<« 1to N, do
if (|current[i,j].intensity - mean[i,j].intensity|< Ijpyer) then
silhouette[i,j] = 0;
else
if (|current]i,j].intensity - mean[i,j].intensity|> I,,per) then
silhouetteli,j| = 1;
else
¢ = [current[i,j].red,current|i,j].green,current|i,j].blue]”
¢y = [meanli,j].red,meanl[i,j].green,mean]i,j].blue]”

AH = cos™! | 4,
lli[[fleoll

if (AH > Achresh) then
silhouetteli,j] = 1

end
end
end
end
end

filtering was a key area of image processing that we intentionally avoided. Erosion and
dilation filters change the overall shape of the silhouette and will seriously affect the overall
quality of the reconstructed visual hull. Dilation and opening filters increase the area of
the silhouettes which gives the 3D volumetric reconstructions a bloated look. Erosion and
closing filters can decrease the area of the silhouette and open larger holes in the silhouette,
which in turn causes holes in the 3D reconstruction.

In our work, we examined different techniques for background subtraction, adopted those
that fit our goals, and adapted those that did not. We used a hybrid algorithm that combined
statistical image differencing, hue angle differencing, and contour analysis. This will be
described in Section 3.3.

2.3 Shape-from-silhouette

Reconstructing an object’s 3D shape from a set of images collected using multiple cameras
is a classic computer vision problem. In the last few years, this problem has generated
considerable interest, partly due to a number of new applications (e.g. Rander and Kanade
[23]) that require good volumetric reconstructions. Shape-from-silhouette is a well-known
approach to this problem, dating back at least to the early 1980’s [27]. In the volumetric ap-
proach to shape-from-silhouette, the scene is represented as a set of three dimensional voxels,
and the task is to label the individual voxels as occupied or empty. These methods work by
first computing the object’s silhouettes from each camera image, typically using background
subtraction. In the geometric approach to shape-from-silhouette, every silhouette pixel from
every camera image is projected into 3D space as a conic solid. After these solids are in-
tersected, what is left is a geometric representation of the visual hull. The boundary of the
visual hull can then be represented using a triangular mesh.

The shape-from-silhouette problem that we address is significantly simpler than the re-
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lated problem of voxel coloring [26]. In voxel coloring, the task is to label every voxel with
its color plus its transparency. Voxel coloring requires handling difficult issues, like visibil-
ity relationships. One advantage of voxel coloring is that the shape of the object can be
estimated more accurately, since a match in camera intensities can be used to prune away
empty voxels. In addition, the resulting voxel colors can be directly used to generate new
views.

Shape-from-silhouette is, relatively speaking, an easier problem to solve. It is also much
less sensitive to the errors in the photometric calibration of the camera system. It is impor-
tant to note that the views of an object from multiple cameras do not uniquely determine
the shape of a non-convex object. This is true even with an infinite number of cameras. The
visual hull of an object [17] is defined to be the maximal object that is consistent with the
object’s silhouette from any viewpoint. It is impossible to distinguish two different objects
with the same visual hull purely by their silhouettes.

Many researchers have been experimenting with various algorithms to implement
shape-from silhouette. Matusik et al. [18] used a geometric approach to silhouette intersec-
tion which required the use of a distributed computer system to solve for the intersections
in real-time. They show that their intersection algorithm parallelizes linearly using a divide-
and-conquer approach. However, this process is computationally intensive. Cheung and
Kanade [4] use a volumetric method on one computer, but distributes the silhouette extrac-
tion among five others. The volumetric methods tend to be simpler, but use more memory
and do not scale as well as the geometric methods. In Cheung’s more recent work, he uses a
high resolution volumetric approach. This is performed entirely off-line, and uses a marching
cubes algorithm to extract an isosurface [5].

Recently, researchers have begun to experiment with systems that can both generate
and interpret volumetric data in real-time. The system developed by Cheung et al. [4]
uses six computers and five color cameras. It supports a voxel resolution of 64 x 64 x 64 X
lin®>. The main purpose of their system was 3D reconstruction of human motion. Simple
fitting of ellipses was performed to track extremities. Carlson et al.[19, 20] used a real-time
sensor as well with a lower resolution volume size of about 40 voxels with a voxel size of
3in®. The main purpose of their system was real-time 3D interaction with a commercial
robotic manipulator. A key difference between these two systems is that Cheung’s was
implemented on a distributed system that used color cameras, while Carlson’s system was
implemented using monochrome cameras and a single computer. Such a system is also
used by Luck et al.[28], where the goal was also human motion tracking. The thing which
differentiates Cheung and Kanade [4] and Luck et al. [28] is the resolution of the kinematic
model that is tracked. The system described by Cheung and Kanade [4] used single ellipses
to model and track the extremities, whereas the system described by Luck et al. [28] used
a fully articulated model of the arms and shoulders. Both systems track in real-time, but
because it is very desirable to reduce the amount of hardware required for such a system,
the second approach is better suited to real-time volumetric sensing. However, because the
second system used monochrome video frame grabbers, the volumetric data computed by
the Cheung and Kanade [4] looks qualitatively better. This is due, in part, to their use
of color for background subtraction. One of the goals of this thesis is to combine the two
approaches by using four color video framegrabbers in a single computer. In this way we
produce a system with qualitatively better volumetric data than that computed by Luck et
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Figure 6: Layout of the RTS3 lab. This is a view from above. The cross-hatches are the extrinsic
calibration targets. The colored lines represent the approximate fields of view of the cameras.

al. [28] without the major hardware requirements of Cheung and Kanade [4].

3 Implementation of RTS?

3.1 System Architecture

RT'S? is the system we built to acquire volumetric data. This sensor uses a combination
of industry standard components including a high-end PC, four analog color video cameras,
and four PCI-bus color frame grabber cards. Using this hardware, we create a time-varying
volumetric image of the visual hull of whatever object is moving in the space observed by all
four cameras. Figure 6 shows the positions of the four cameras from above. An additional
goal was to design the software with a standard application programming interface (API) to
the cameras, so that new types of cameras could be added with relative ease. To date, we
have used the system with analog color framegrabbers, RS-170 monochrome framegrabbers,
and IEEE 1394 (FireWire) cameras.

We implemented RT'S? using a software framework developed at Sandia National Labs
[37] called Umbra. It is a cross-platform development environment (Windows, Irix, and
Linux operating systems) written in C++, Tecl/Tk [38], OpenGL [39] and the Standard
Template Library (STL). A screen-shot of the run-time GUI for RT'S® is shown in Figure 7.
To better illustrate the 3D nature of the volumetric data, the voxels are rendered as spheres.
Spheres of a single color occupy planes of constant Z value. This method is only used for
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illustration, as it creates a graphics bottleneck at higher resolutions. Normally the voxels
are displayed as simple points. 2 A second pop-up window displays the real-time silhouette
information.
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Figure 7: Graphical user interface for RTS3. This is the graphical user interface for RTS3.
The GUI allows for a large OpenGL 3D display, reconfigurable buttons and menus whose function-
ality can be set using the Tcl scripting language, and a Tcl shell interface at the bottom of the GUL
The smaller window displays the images and overlays the silhouette information in real-time. To
better illustrate the 3D nature of the volumetric data, the voxels are rendered as spheres. Spheres
of a single color occupy planes of a constant Z value. This method is only used for illustration, as
it creates a graphics bottleneck at higher resolutions. Normally the voxels are displayed as simple
points.

The RTS? system was rapidly designed and implemented using the GUI tools and data
flow architecture provided by this framework. The individual software modules can be
described as; 1) data sources, 2) filters, and 3) sinks. In our system, the cameras act like
data sources and the shape-from-silhouette algorithm acts as a data filter. The data sink is
a rendering module in OpenGL. A data flow diagram is shown in Figure 8.

3.2 Camera Calibration Methodology

Our implementation of camera calibration involved two stages. As mentioned in Section
2.1, a series of checkerboard images was used to estimate the intrinsic parameters. The
checkerboard image yields a set of 2D points that corresponds to points on a 3D rigid body.
Next, each camera was calibrated relative to a common world coordinate system. This

2Tcl/Tk is used to implement the GUIL This is a scripting language that allows the user to parameterize
RTS? at run time using scripts. Individual modules in the system (background subtraction, volume com-
putation, and rendering) use input and output connectors to define the flow of data through the system.
Modules are fully decoupled from the other modules in the system except through the language interpreter
itself.
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Figure 8: Data flow diagram for RTS3. This is the data flow diagram as it is connected in
the Umbra framework

was done with a GUI (as shown in Figure 9) that allows the user to pick specific planar
target points on the ground plane and associate them with 3D points stored in a text file.
The camera views have intrinsic calibration parameters associated with them. The manual
identification of the targets is performed by the user. Inaccuracies are minimized by searching
a b x 5 pixel neighborhood of the points around the selected coordinate. This provides for an
optimal sub-pixel match for the center of the target. Once all targets are selected, the user
invokes a function to find the extrinsic parameters. This GUI allows for multiple cameras to
be selected and calibrated to the same world coordinate system.

Once the intrinsic and extrinsic parameters of each camera have been determined, the
next step is to calibrate the common volume observed by all the cameras. Our system uses
lookup tables to store precalculated index information. In brief summary, each voxel centroid
position is back-projected into each of the camera images using the extrinsic and intrinsic
calibration parameters for that camera. The algorithm to create the individual lookup tables
is shown in Algorithm 3, where backProject3D ToCamera() takes a point in 3D, (X,Y, Z),
and a set of camera calibration parameters, and returns the pixel position, (@, ), that the
point maps to using the intrinsic and extrinsic calibration parameters for that camera. In
our system, the precomputation allows us to perform the silhouette intersection in real-time.
Each voxel holds a single pixel position for each camera. In the lookup table file, this is
represented as an ordered pair, (u, v). At run time, a pixel position is translated into a pointer
to the specific memory location representing that pixel in the silhouette image. On 32-bit
operating systems pointers use four bytes of memory. This leads to a voxel lookup table whose
total size is 4 x numCameras x N, x N, x N, bytes (where N,, N, and N, are the number
of voxels in their respective axes). The pseudocode for backProject3DToCamera() is shown
in Algorithm 4. These calibration operations are all performed offline. The precomputation
of the 3D to 2D associations allows the system to perform in real-time.

The algorithms to construct the volume calibration are O(n), where n is the number of
voxels in the volume. The function backProject3DToCamera() is O(1). This assumes the
number of cameras is a constant, and is far less than the number of voxels.
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Figure 9: Extrinsic calibration GUI. This figure shows the GUI that is used to calculate the
extrinsic calibration parameters. The red numbers are positioned near the planar targets (within a
5 x 5 pizel window), and the 2D positions that are selected are correlated with 3D positions stored
in a file. By using the intrinsic parameters, we can solve for the relative transform between the
camera and the planar calibration grid.

Algorithm 3: Algorithm: Create 3D to 2D Look Up Tables
input : A volume origin, voxelSize and resolution in three dimensions, and a set of
camera calibration parameters
output: A look-up table that associates 3D points in the volume to 2D points in the
camera image planes

CreateLookUpTable(origin, voxelSize)
1+ 0
for x +— 1 to N, do
fory < 1to N, do
for z <+ 1 to N, do
//X,Y,Z are the actual points in 3D space
X ¢ origin.z + (x x voxelSize.x)
Y « origin.y + (y x voxelSize.y)
Z < origin.z + (z x voxelSize.z)
for Camera <— 1 to numCameras do
//point2d is an ordered pair (u,v)
point2D <+ BackProject3DToCamera(X,Y,Z,Camera)
voxel Table[i][Camera] <— point2D

end
1+ i+1
end
end
end

3.3 Background Differencing and Silhouette Extraction

The initial background subtraction algorithm was the simplest part of the sensor to imple-
ment, but creating an algorithm that performs robustly in many different lighting conditions
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Algorithm 4: Algorithm: Back Project 3D Point to Camera
BackProject3DToCamera(X, Y, Z, Camera)
begin
W [X,Y,Z,1]
T + Camera.T // 4 x 4 homogeneous transform
A « Camera.A // 4 x 3 camera matrix
ki <— Camera.k, // first radial distortion coefficient
ky <— Camera.ky // second radial distortion coefficient
//put w into camera frame by multiplying it by the camera transform T
w'  Tiif
// project w' onto the image plane via calibration matrix A
i Au
//scale by mey
xr 4 1o
y i
m2
//correct for radial distortion
radius < /z2 + 1?2
radius® < radius x radius
& < 2+ (x — ¢,)[ki(radius) 4 ko(radius?)]
§ + y + (y — ¢,)[k1(radius) + ky(radius®)]
return (z,¢)
end

is partly art. There were many problems to overcome, including noisy cameras, shadows,
and separating silhouette pixels from background pixels.

Castleman [6] describes the basic technique of image differencing using a hard threshold,
a reference image, and a current image. Sometimes the reference image is an average image
(i.e. average of several images acquired a priori), sometimes the reference image is a low-pass
filtered copy of the first image that is acquired, and sometimes it is the first image with no
manipulation at all. Depending on the quality of the video signal, and the way in which it
is digitized, the amount of ambient noise in a video image can vary widely.

The first problem we addressed was the elimination of shadows, especially those cast
on the floor near the feet. In Cheung and Kanade [4] and Davis and Bradski [22] color
cameras and framegrabbers were used to acquire 24-bit color data. Although these authors
used slightly different techniques, their results were similar. Cheung [4] calculated a hue
angle difference when the intensity difference values were within a specified range. Davis
and Bradski [22] estimated a mean and a standard deviation image (over a series of the
initial images) where they differenced the mean and the current image and compared it to a
threshold which was proportional to the standard deviation of the background at that pixel.

In our work, a similar problem with shadows was observed. The first version of RT'S?
was implemented using monochrome cameras. An example of this problem is illustrated in
Figure 10 and in Figure 11. Figure 11 shows how shadows in the image produce errors in
the volumetric reconstruction.

The key assumption used for eliminating shadows by color image differencing is that the
area where a shadow is cast generally shows a large change in intensity but a small change

24



Camera?2

0 I Ny
Camera3 | £ ' %  Camera4
.fw b, o 7=

. o b )
e . A

Figure 10: Monochrome image differencing. This shows how using only monochrome images
can lead to poor silhouette segmentation caused by shadows.

Figure 11: Shadows produce errors in 3D. This shows how shadows can induce 3D noise in
the volumetric reconstruction. The shadows on the floor of the 2D image produce errors near the
legs and feet in the 3D data.

in hue. Hue is an angular representation of color. Therefore, the angular difference between
a pixel in the background and a shadowed pixel from the foreground should be relatively
small. Hue is computed as follows: [6]:

3((R—G)+ (R - B))

H = cos *
J(R—G)>— (R-B)(G - B)

(9)

You can see that if R = G = B the value of hue goes to infinity. Consequently, purely
gray pixels have undefined color. Let ¢; equal the current RGB pixel. Let cg equal the
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background RGB pixel. The change in hue between these two values is defined as:

c}-CB]

AH = cos ! [ﬁ
[exllfl<oll

(10)

We used hue difference as an additional check against classifying shadow pixels as silhou-
ette. Cheung’s system [4] was implemented in a distributed fashion. Specifically, the image
processing for each camera was handled by a single computer. Since our goal was to use a
single computer for all of the computation, this calculation was optimized by using look-up
tables for the square root and arc-cosine functions. These look-up-tables are accurate to five
significant digits. The addition of optimized hue differencing allowed us to raise the intensity
thresholds above the level typically produced by shadows cast on the floor.

The next problem we addressed was the noise in individual cameras. Ambient noise levels
can vary widely between cameras, which makes it impossible to use the same threshold values
across a set of cameras that possibly have different noise properties.

One way to evaluate the noise in a digital camera is to take the standard deviation of
a series of images. This is part of the method for statistically estimating a background
image as discussed in Davis et al. [22]. The standard deviation image approximates the
noise of the image sensor. An example of the standard deviation image (estimated using a
set of 75 color images) is shown in Figure 12. The standard deviation is estimated across
the red, green, and blue color planes individually. Brighter colors correspond to higher
standard deviation values. Notice that the images from cameras one and two have a much
lower standard deviation than the images from cameras three and four. This illustrates that
different cameras can have very different noise characteristics.

Cameral
Camera?

8 Camerad

Figure 12: Standard deviation image. This figure shows the per pizel standard deviation image
estimated from 75 color images. The standard deviation image can be used for per-pizel thresholding
and can compensate for differences in gain, exposure, and noise between cameras. The majority
of the noise appears in the blue pizels. This is caused by the physical format of the CCD element,
which gives more area to red and green pizels. This means that the blue elements on the CCD are
being lit with a smaller number of photons, and must therefore use a higher gain.

We merged these two methods (intensity differencing and hue differencing) into a single

26



procedure that is both fast and flexible. The pseudocode for our procedure is shown in
Algorithm 5

Algorithm 5: Algorithm: Extract Silhouette from Background
input : mean,stdDev,and current RGB images
output: a binary silhouette

ExtractSilhouette(stdDev, mean, current)
begin
for j < 1to N, do
fori<+ 1to N, do
silhouette[i,j] = 0

A r = currentli,j|.red - meanli,j|.red

A g = currentli,j|.green - meanli,j].green

A b = current[i,j].blue - meanl[i,j].blue

if (not (| Ar| < Liower || | Ag | < Tiower || | Ab | < Tiower)) then
if (| Ar| > Iupper || | Ag| > Lupper || [ Ab | > Lypper) then
‘ silhouetteli,j] = 1
else

1 = [[current[i,j].red,[current[i,j].green,[current][i,j].blue]”
Co = [mean]i,j].red,meanli,j].green,meanl[i,j].blue]”

AH = cos! [%

if (AH > AH,,,,) then

‘ silhouetteli,j] = 1
else

ro < stdDevli,j].red
9o < stdDevl[i,j].green

by < stdDevl[i,j].blue
if (|Ar| >r, || |Ag|>g- | |Ab|>b,) then

‘ silhouette[i,j] = 1
end
end
end
end
end
end
end

The results of the background differencing algorithm are shown in Figure 13. The shadows
have been successfully removed. The colored pixels have been classified as silhouette using
the rules described in Algorithm 5. Pixels classified due to the intensity test are displayed
as blue. Pixels classified due to the standard deviation test are displayed as red. Pixels
classified due to the hue angle test are displayed in green. The result of the classification can
be seen in Figure 14, where the classified pixels have been converted into binary silhouettes.
In Figure 15, the volumetric data computed using color images exhibits none of the noise
that was present in the volumetric data computed using monochrome images.
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Figure 13: Color silhouettes with shadows removed. This picture shows the improvement that
can be attained in extracting the silhouettes by using color images and differencing with hue and
standard deviation. Pizels classified due to the intensity test are displayed as blue. Pizels classified
due to the standard deviation test are displayed as red. Pizels classified due to the hue angle test
are displayed in green. The improvement in the 3D data is seen in Figure 15.

Figure 1/: Binary silhouettes produced from color segmentation. This picture shows the
binary silhouettes that can be derived from Figure 13. The improvement in the 3D data is seen in
Figure 15.

Cameral

Cameral

The last problem we addressed was filling the small holes in the silhouettes. Typically,
for this purpose, some kind of local morphological operator is used after thresholding. Un-
fortunately, the use of morphological operators often introduces errors in the 2D silhouette,
which, when projected, produce errors in the reconstructed 3D shape. Our approach was to
search the image for contours. We used a function in the OpenCV library (see [29]) that
decomposes a binary image into a two level hierarchy of contours: exterior contours and
their interior holes.

The next step was to fill the small interior regions with the value one, and to fill the small
exterior regions with the value zero. This has the combined effect of removing holes from
the large silhouettes, and removing speckle from the background. Fortunately, the function
in the OpenCV library is fast enough to run in real-time. Figure 16 shows the silhouette
images before contour processing and Figure 17 shows the silhouette images after contour
processing.
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Figure 15: Improved 3D data. This picture shows the improvement in the 3D data which results
from using a color image processing technique to extract the silhouettes, as shown in Figure 13.

3.4 Implementation of Shape-from-silhouette

We implemented two different shape-from-silhouette algorithms, which we have
termed: 1) PixelVolume, and 2) HybridVolume. Both algorithms rely on table look up to
speed the process of back-projection.

The PixelVolume algorithm is shown in Algorithm 6. It works by traversing every voxel in
the volume, and computing the (z,y) location in each image that the voxel centroid projects
to. It examines the appropriate pixels in each silhouette image and if they contained within
the silhouette, that voxel is marked as occupied. If a single pixel is outside the silhouette,
then that voxel is marked as empty. Because we wanted to increase the frame-rate for
tracking a human figure, a key optimization was to restrict the processing to voxels in the
volume around the centroid of the human figure. The centroid, (xg, 3o, 20), and maximum
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Figure 16: Silhouette images before contour processing. Silhouette images from all four

cameras before contour processing.
' Camera2

Figure 17: Silhouette images after contour processing. Silhouette images from all four cam-
eras after contour processing. The noise in the silhouette images has been successfully reduced
without substantially changing the shape of the silhouettes.
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height in the Z axis, maxZ, are tracked from frame to frame. The volumetric window is a
cube that is maxZ wide, maxZ long and maxzZ high. This cube is centered in the xy plane
on (xg,y). Depending on the full size of the monitored volume, this can result in significant,
constant time savings.

The HybridVolume algorithm is a bit more complex. It is shown in Algorithm 7. A
single camera is designated the dominant camera. For this single camera, we generate look-
up table different from those used in the PixelVolume algorithm. Rather than looking up
pixels from voxels, we invert the problem, and for each pixel, we store the list of voxels
which that pixel projects to. For the dominant camera, we traverse all of the pixels, and
we push voxels associated with pixels belonging to the silhouette onto a stack. After all
pixels in the dominant camera have been examined, we begin to pop the voxels from the
stack. At this point the stack contains a subset of the voxels in the volume. For each of
the voxels on the stack, we use the PixelVolume algorithm to check that voxel in the images
from the remaining cameras. If the voxel projects to silhouette pixels in the images from
the remaining cameras, we mark it as occupied. If we encounter even a single non-silhouette
pixel, then we mark that voxel as empty. The major difference between this algorithm and
the PixelVolume algorithm is that HybridVolume drastically reduces the amount of time it
takes to compute a volumetric frame. In practice, we have found that the camera which is
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Algorithm 6: Algorithm: PixelVolume Shape from Silhouette
input : silhouettes: an array of silhouette images

output: volume: a binary 3D volumetric image

PixelVolumeSFS(silhouettes)
begin
for k + 1 to N, do
for j <~ 1to Ny do
fori«+ 1to N, do
for camera < 1 to numCameras do
(u,v) = voxelLookUpTable[camera, i ,j, k]|

if (silhouettes[camera, u, v] == 0) then
// If one pixel does not belong to a silhouette, stop
break
end
end
// If for-loop completed successfully, mark voxel as occupied
if (camera == numCameras) then
volumel[i,j k] = 1
else
volumel[i,j,k] = 0
end
end
end
end
end

most suitable to be the dominant camera is the one mounted on the ceiling looking down.
Of course, this depends on the geometry of the monitored volume and the relative positions
of the cameras. In general, a downward looking camera on the ceiling observes a smaller
silhouette than do the other cameras. This has the effect of sampling a smaller amount of
the volume for further testing than say, a side-looking camera.

If camera noise occurs around specific features common to all camera views (e.g. shadows
cast on the floor), then that noise becomes spatially correlated and produces false voxels. One
nice thing about this approach is that it is reasonably tolerant of individual camera noise.
This is because there is little spatial correlation between the noise of individual cameras.
An example of this can be seen in Figure 18. Here, one of the cameras is producing a large
amount of noise, while the others are not. Surprisingly, this results in a 3D reconstruction
that does not contain large amounts of 3D noise, as shown in Figure 19. Volume intersection
algorithms are tolerant to this kind of noise because a pixel must be classified as silhouette
in images of all of the cameras in the system to create an occupied voxel.
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Algorithm 7: Algorithm: HybridVolume Shape from Silhouette
input : silhouettes: an array of silhouette images

output: volume: a 3D binary volumetric image

HybridVolumeSFS(Silhouettes)
begin
for j «+ 1to N, do
for j « 1 to N, do
if silhouettes|DominantCamera, i, j] == 1 then
for 1 < 1 to VoxelList[i,j].size() do
stack.push[VoxelList[i,j].voxel[l]]

end
end
end
end

for i < 1 to stack.size() do
voxel = stack.popl]
//Use the PixelVolume method for the remaining cameras
for camera < 1 to numCameras-1 do
[u, v] = cameralookUpTable[camera, voxel]

if (silhouettes[camera, u, v] == 0) then
break

end

end

// If for-loop completed successfully, mark voxel as occupied

if (camera == numCameras-1) then
voxel.MarkAsFilled()

else
voxel. MarkAsEmpty ()

end

end
end

4 Experiments and Results

4.1 Resolution vs. Frame-rate

We experimentally compared the run-time behavior of the two different volume traversal
algorithms: PixelVolume and HybridVolume. We tested the frame-rate of the RT'S? system
at 24 levels of volumetric resolution. We started with a Look Up Table (LUT) resolution of
5 x 10° total voxels, and reduced the resolution of each successive set of LUTs by 2 x 10°
voxels. The final LUT in the set had approximately 8 x 10° voxels. For each LUT, we
presented the same set of 600 color images to the system. The first 75 images were used to
compute the mean and standard deviation images used for background subtraction, and the
remaining 525 images showed a subject entering the volume, performing a series of motions,
and exiting. To perform these tests, the RT'S? system was modified to work in batch mode,
using “write-images” and “read-images” functions. These functions work on the raw image
data. The only sense in which batch mode differs from online mode is that the images are
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Figure 18: Bad data from one camera. An example of how the effect of bad, noisy data from
one camera is mitigated by the shape-from-silhouette algorithms. The 3D reconstruction resulting
from this is shown in Figure 19

read off of the hard disk in batch mode instead of being read directly from the framegrabbers.

The results were surprising. Figure 20 and Figure 21 are bar graphs which illustrate
the performance of the two algorithms, averaged over the 600 image frames, at each LUT
resolution.

In both approaches, the frame rate goes up dramatically as the number of voxels falls
below 10°. This due to cache locality. At higher volumetric resolutions, the number of
context switches between cache and main memory is the main bottleneck in the algorithm.
At lower resolutions, the volume is represented by substantially less memory, and thus it
takes fewer and fewer main memory swaps into cache to traverse the entire volume.

The image resolution used in the tests at was 160 x 120 pixels. For four images of this
size, we use 76 kilobytes of memory. The amount of level 2 cache on the Pentium 3 CPU
is 256 kilobytes. At this image resolution, we can fit all four silhouettes into cache. The
remaining cache can be used to process the volume data.

The HybridVolume approach had frame rates that were twice as fast for the high resolu-
tion volumes. This is because the number of voxels that are checked is roughly one half the
number checked at the same resolutions using the PixelVolume approach. The PixelVolume
approach uses a rectangular window around the subject that is as wide and long as it is high.
The HybridVolume approach projects the silhouette from the dominant camera from the top
of the volume to the bottom. This results in a smaller number of voxels that are checked for
occupancy. As the distance between the dominant camera and the volume is increased, the
percentage of voxels that is pushed on the stack for testing is decreased.

5 Conclusions on RTS?

In this thesis, we presented work on the design, analysis and implementation of RT'S®. The
system produces time-varying volumetric data at real-time rates (10-30Hz). The data is
in the form of binary volumetric images. The techniques needed to implement this system
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Figure 19: 3D data with one bad silhouette image. An example of how the effect of noise in
one camera is mitigated by the shape-from-silhouette algorithms. One bad camera does not produce
significant noise in the volumetric reconstruction. This feature makes the system very robust to
small changes in any of the cameras.

were discussed in detail: calibration, silhouette extraction, and volumetric intersection. We
produced qualitative results comparable to other systems described in the literature, mini-
mized the system’s hardware requirements, and still achieved real-time performance. In this
thesis we reviewed the previous work in the field, and derive the mathematics behind volu-
metric calibration, silhouette extraction, and shape-from-silhouette. We reviewed the topics
of camera calibration and volumetric intersection. For our sensor implementation, four color
cameras were installed in a lab and used with our software to track volumetric motion. An
analysis of resolution vs. frame rate was performed between two different implementations
of the shape-from-silhouette technique. This showed that the HybridVolume approach is
superior to the simpler PixelVolume approach. An application of the system to the problem
of generating synthetic 3D views was also demonstrated.

Because the RT'S? system works without encumbering wires and photo-reflective tape, is
is a natural choice as the base technology for a new generation of motion capture devices. Our
system is currently being used by the Colorado School of Mines as a data acquisition system
for the purposes of markerless human motion tracking. In our most recent collaborations we
are tracking a nineteen degree of freedom human kinematic model.
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Figure 20: Data from run-time test 1. Average frame-rate for the PizelVolume Algorithm.
These timing tests for the PixzelVolume Algorithm were performed using the same set of 600 images
over a set of 24 linearly decreasing volumetric resolutions.
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Figure 21: Data from run-time test 2. Awverage frame-rate for the Hybrid Volume Algorithm.
These timing tests for the Hybrid Volume Algorithm were performed using the same set of 600 images
over a set of 24 linearly decreasing volumetric resolutions.
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As Moore’s law continues to increase computational power and reduce the size of the
electronic components, this type of 3D computer vision system will soon be seen in the
home, workplace, and community.

6 Future Work on RTS3

For our future work, we would like to examine ways of exploiting these systems for everyday
user interactions. Because RT'S? work without encumbering wires and photo-reflective tape,
they are a natural choice as the base technology for a new generation of motion capture
devices. Our system is currently being used by the Colorado School of Mines as a data
acquisition system for the purposes of marker-less human motion tracking. We intend to
stay actively involved in their efforts.

Another possible application of this technology is to build a 3D Green-Screen version of
the sensor for broadcast market. Television studios that do local news could have weather
forecasters flying through the 3D rendering of storms, as opposed to just blandly standing
in front of them.

The application of synthetic view using these methods could be greatly enhanced by using
many cameras for texture texture mapping, while only using a small subset of the cameras
for the shape-from-silhouette process. This would allow one to dynamically choose the small
number of cameras used for creating the 3D data, while always using the ”best” camera for
texture-mapping.

Yet another area of research would be to to explore the creation of an embedded version
of the system that could be used as a peripheral device. As small video cameras have been
reduced in cost by the advent of distributed computing, so too may we soon see a set of
small web-cam sized devices that you set up without a visible computer. The possibility of
distributing the computational requirements for the shape from silhouette process among
several small cameras with built-in microprocessors is the next big step for this technology
in hardware.

In order to have deep market penetration, the responsibility of calibration must be re-
moved from the end user. There are two ways around this issue. The first is to build a system
of pre-calibrated cameras that come in a rigid structure that is calibrated, disassembled, and
reassembled by the user. This may be practical for high end systems, but for consumer grade
systems, we will need to evaluate the possibility of adaptive calibration or self calibration.

7 Application To Tracking

Due to the enormous number of applications involving human-computer interaction, real-
time markerless 3D human motion tracking has become a highly valued goal. Applications
such as virtual reality, telepresence, smart rooms, human robot interaction, surveillance,
gesture analysis, movement analysis for sports and medicine, advanced user interfaces, and
many others all have a need for real-time human motion-tracking. Accordingly there has
been a lot of work done in this field. However in his recent review of work done in human
tracking, Gavrila states that results of markerless vision based 3D tracking are still limited.
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In conclusion he lists several challenges that must be resolved before visual tracking systems
can be widely deployed [1].

1. The model acquisition issue: the majority of previous work assumes the 3D model is
known apriori.

2. The occlusion issue: most systems cannot handle significant occlusion and do not have
mechanisms to stop and restart tracking of individual body parts.

3. The modeling issue: few body models have incorporated articulation constraints or
collision constraints.

4. The ground truth issue: no systems have compared their results to ground truth.

5. The 3D data issue: few systems have used 3D data as direct input to their tracking
system. Using 3D data relieves the problems associated with retrieving 3D information
from a 2D-view [1]. In addition to Gavrila’s challenges we believe that there are two
other requirements for a tracking system to be readily deployed.

6. A system must also perform tracking in real-time to be useful for most applications.
7. Calibration of the data acquisition device must be simple and fast.

The method proposed in this paper not only expands upon the previous work but will
also attempt to meet these challenges.
In this section we will cover the implementation of our tracking system in detail. Our track-
ing system went through two major developments. The first development only tracked the
upper body dynamics of the subject. The second development tracked the full-body kine-
matics of the subject. Accordingly this summary is divided into two sections covering the
development of each system. Within each system there exist two main components. The
first component initializes our model and the second tracks the model. After discussing the
development of our algorithm we will show how our system provides visual feedback of the
tracking to the user. Following that a brief summary of the results for the current state of
the project are provided. Lastly a synopsis of the tracking and its contributions to the field
of human tracking are listed.

8 1% Development - Upper Body Dynamics Only
The first system only tracks the upper body dynamics of the human subject. Accordingly

the eleven degree of freedom (DOF) model includes the z, y position of the body, a torso
rotation about the z axis, along with four rotations in each arm.
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8.1 Initialization

To simplify tracking we require that the user performs an initialization pose upon entering
the workspace. The pose is a simple cross formation with the user facing along the y axis
with his arms extending parallel to the floor and straight out to the sides of the body (along
the x axis). Once in this pose, the system measures the body parameters required for track-
ing: body radius, shoulder height, and arm length. Currently the user must always begin
by initializing the system. However, the model parameters can easily be saved to a file and
read in before the user enters the workspace. Our system already uses voice communication,
therefore it would be easy to incorporate an option to simply tell the system your name
while entering the workspace and skip the initialization phase.

8.2 Tracking of Upper Body

The original tracking procedure is broken into two phases. The algorithm first finds the
(x,y) location and heading (the direction the person is pointed) of the torso. We can then
predict the location of the shoulders, and assume that their locations remain constant for a
particular torso orientation. These locations are then used to anchor the arms. In this way
we only need to solve for the angles at which the upper arms extend from the shoulders, and
then for which the lower arms extend from the elbows.

With this algorithm we only compute the x, y location of the torso and a rotation about
z; accordingly we are assuming the user is standing straight up. The z, y location can easily
be computed using the median value of all the voxels. The heading is computed by fitting
an ellipsoid to all the data within the body radius of the x, y location. This is done by per-
forming an eigen-decomposition on the moment matrix M. The eigenvectors of this matrix
correspond to the principal axes of the ellipsoid. The principal axis closest in orientation to
the last known heading is taken as the new heading of the person.

My, M,, M,, | n
My, My, M, |where,(My=—">_ ab;) (11)
M., M, M., =1

To compute the angles for a particular arm segment, we simply compute the angles from
all voxels that are not within the body radius to the anchor point. The result is used as a
pulling force from the current orientation to a new orientation that passes through this voxel,
as shown in Figure 22. In this way each voxel can have an effect on all of the arm segments,
which overcomes the problem of having to decide which arm segment a voxel belongs to.
However, we weight each pull by the distance, d, to each arm segment, so that a voxel exerts
a stronger pull on closer arm segments than on those further away. For each voxel, let the
minimum distance to any arm segment be denoted as d,,;,,. The weight for each segment
is given by (dyin/d)3. Accordingly as the model is pulled into the correct orientation, the
forces exerted from a particular voxel should be almost entirely on the segment closest to
the voxel. This weighting strategy works extremely well for small adjustments, which is all
it should have to make since our tracking rate is extremely high. In addition we employ
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Figure 22: Ezample of alignment forces (the weight to the upper arm is 1 while the weight to the
lower arm, which is further away, is scaled down,)

zero weighting to any arm segment further than a certain distance from the voxel (daz,
computed from a maximum arm velocity divided by our tracking rate). Also, if a voxel is
within a very small distance of an arm segment (less than dg.,), then we assume that it
belongs to only that segment, and assign a zero weight to all other segments. The weighting
assignment is shown below.

) (/)i f din < d < dpag
Weight = 0 if d> dpas (12)
0 if d> dpin&dmin < dseq

Once the adjustment is computed for all voxels outside of the body radius, an adjustment
is made to each of the arm segment angles and the loop repeats. The process stops for each
arm segment when either the adjustment is too small or the move was bad (fewer points are
close to new orientation of the segment).

Our system stops tracking an arm when the arm lies along the body. If we hope to track
the arms when they are extremely close to the body we must move to a much more precise
torso model.

The process also has a recovery algorithm in case it ”loses” an arm. If too few voxels are
close to one of the arm segments, the process assumes that the optimization has failed and
attempts to grow the arm instead. Since we know the shoulder position, we start a grow-
ing algorithm from this point. Growing can include any neighboring point outside of the
body radius, and continues until no new points are found. In this way the last point found
should again be the hand and the elbow should be somewhere in the middle. Accordingly
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we compute the elbow to be at the voxel that was 2/3 of the way down the arm. Angles are
calculated using these locations. The growing algorithm may not be able to find the arm
if we have missing data (data acquisition has failed to find the arm voxels) or if the arm
lies within the body radius. In this case our algorithm will leave the arm where it was last
located and wait for the next set of data.

8.3 1% Development Results

The first system is able to collect data and track our model at 16 frames per second using a
single computer. We are not able to indicate precisely how accurate our tracking is because
we do not know the ground truth for the users movement within the workspace. However,
the fit looks good when comparing the movement of the user and the avatar side by side,
movies are available at http://egweb.mines.edu/cardi/3dvmd.htm. In addition we were
able to use the joint angles to distinguish several gestures to control a crane, as will be
discussed in the application section.

In general the system worked extremely well when the arms were moved at normal veloc-
ities, and were held away from the body and from each other. However, when the arms were
positioned close to one another the arm segments from one arm would be pulled towards the
other. A similar problem occurred when the elbow was bent well past ninety degrees. In this
configuration the pull from the upper arm voxels on the lower arm was often large enough to
dominate. Accordingly when the actual arm was straightened the tracking algorithm would
leave the elbow bent. Lastly when an arm was moved extremely fast, the algorithm could
fall behind and eventually loose the arm. In general our routine was able to detect that it
had lost the arm in these situations, and would then revert to the growing algorithm to find
the arm.

8.4 Application To Gesture Analysis

We employed our system to perform crane gesture analysis. A separate computer, with a
voice recognition system, was utilized to read the joint locations, use them to interpret ges-
tures, and control the crane.

The process follows this pattern. When a user enters the workspace the computer says
”Hello” and asks the user to verbally identify himself (eventually this will be used to skip
the initialization step). The user is then asked to stand in the initialization pose and the
system verbally communicates when initialization is done and gesturing can begin. Once in
this state, the system continuously inspects the joint angles to see if a gesture is occurring.
Because joint angles are being used for gesture interpretation the size of the user has no
impact, and the user can perform a gesture facing any direction and even while moving.
Currently the system is able to reliably interpret all of the gestures shown in Figure 23. A
movie can be seen at http://egweb.mines.edu/cardi/3dvmd.htm.
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Figure 23: The 17 gestures depicted were successfully recognized by our system (gestures on the top
row can be performed with the arms switched)

8.5 1% Development Conclusions

In this phase of development, we were able to use the hardware and software that we had
developed to track a low-dimensional human avatar at 16 Hz. The avatar we used had a
total of eleven degrees of freedom: four in each arm, and x,y,0 for the position of the body.
In addition we were able to employ our system to perform crane gesture interpretation and
successfully interacted with a system using a robotic arm to simulate crane movement.

However, this project required many improvements. A tracking algorithm that uses a
tighter torso model and allows for six DOF movement is needed. The new torso model
will contain both shoulder and hip locations, hence our current tracking algorithm can be
implemented to track the legs. With the improved model we would also like to implement
a force based scheme in which forces transmit throughout the model. For example a point
that pulls the arm outward should not only straighten the elbow but also have an effect on
the shoulder. In addition, we still have not fully answered some of the challenges listed in
the introduction. We plan to test the accuracy of our system by obtaining a ground truth
to compare to the joint angles obtained through tracking. This will be accomplished by
comparing our tracking results to values obtained with an Optotrak [3] sensor.

9 2" Development - Full Body Tracking

This development adresses the limitations of the first development and creates a usable sys-
tem. The ultimate goal of this project is to autonomously track in real-time a full-body
model of a human undergoing unconstrained movement in the workspace. The first stage of
this process is to develop a method to acquire and track the human model. The model is
a series of linked segments, which articulate at joints between the segments, as depicted in
Figure 24. The model contains four degrees of freedom (DOF') in each arm and leg (rotations
only), three DOF for the head (rotations), and six DOF in the back (3 translations and 3
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Figure 24: The reduced body model consists of a siz degree of freedom torso (z,y,z,a,B,7y) with
four degree of freedom articulated limbs (arms, legs) and a three degree of freedom head.

rotations). The segments model the body as closely as possible and do not change shape or
size during tracking, which could cause errors in subsequent tracking.

9.1 Initialization

To acquire the model the user must still perform an initialization pose upon entering the
workspace. The pose is simple stance in which body segments are in clear view (standing
erect and facing an approximate direction with arms extended to the sides and legs separated
from one another), so that it is easy to measure parameters of each body segment. Once
in this pose the system segments out voxels associated with each body part using the same
process that was outlined in the first development. Body parameters are then estimated
for each segment by fitting an ellipsoid to all the voxels associated with that segment (as
explained in Section 8.2).

9.2 Tracking a Twenty-Two Degree of Freedom Human Model

Once the model has been acquired, tracking of the model can begin. The tracking scheme is
a physics based approach in which the data points, voxels, exert forces on the model. With
our model one only needs to solve for the joint angles of succeeding segments, because they
are anchored by the previous segment. This principal has been widely used for controlling
the movement of robotic arms [2]. Along these lines each voxel exerts a force upon the
model, which act like springs to pull the model into alignment with the data as shown in
Figure 25. Accordingly the force exerted increases with the voxel’s distance from the model,
until greater than a maximum distance at which voxels are assumed to be erroneous and
their pull is set to zero.
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Figure 25: Vozels exert spring-like forces, which pull the model into alignment with the data.

This spring-like method is used in an iterative scheme in which several small adjustments
to the model’s position and orientation are made for each set of data. Since data is acquired
at extremely fast rates ( 20 frames per second) the adjustment to the model will be small
for each data set. The adjustment is calculated using the forces to calculate accelerations,
which are then transformed into adjustments via the principle that distance = at?/2 (time
is arbitrary for this system since the forces and hence the acceleration are virtual).

This method is similar to the first development, however now forces transmit throughout
the entire model. For example, now that the inertial properties of the entire arm are modeled
even when voxels only project onto the lower arm the entire limb will adjust to align with
the data. Hence the upper segment will still move into the correct orientation. If voxels only
project onto the upper segment the angles associated with the lower segment will remain
constant. This is appropriate because there is no reason to assume any change has been
made if there is no data to support the change.
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9.3 Torso Tracking

The torso model used has six degrees of freedom, translation in three directions and three ro-
tations. Therefore, forces exerted on the torso must create both translational and rotational
adjustments. Translation is calculated according to @ = f /m, where f is a force vector of
the sum of all the forces exerted on the torso, and m is the mass of the torso (mass is set to
the number of voxels that project onto the torso). The rotational adjustment is calculated
according to @ = f/f, where ¢ is vector of the sum of the torques created by each force about
the centroid, and i is a vector of the inertia of the torso model. These equations yield ac-
celerations that are used to calculate adjustments for the iterative alignment using d = at?/2.

9.4 Limb Tracking

The legs and arms are anchored at their respective hip and shoulder locations on the torso,
which are assumed to remain constant for a particular torso orientation. Therefore, the
forces acting on the limbs translate to pure rotations in the form of torques. For a system of
connected segments the Jacobian can be used to simplify torque calculations, 7 = JTf [2].
Newton-Euler dynamics relates joint torques to the velocities and accelerations of a system,
7= M(0)8" + 7(0,0') + §(0), where M is an inertia matrix of the segments, 7 is a vector of
the Coriolis and centrifugal terms, and § is a vector of gravity terms [2]. In this virtual en-
vironment the effects of Coriolis, centrifugal, and gravity forces can be thrown out because
they do not exist. Accordingly the equations now relate the joint torques to the angular
acceleration at each of the joints through the inertia matrix, @ = M '¥. Again using the
simple equation, d = at®/2, one can compute an adjustment to the joint angles due to each
force.

Since many voxels will exert pulls on each segment, it is far more efficient to combine
all of the forces for each body segment into a single force before applying the Jacobian and
inverted inertia matrix. It can easily be shown that if the resultant force vector is the sum
of the individual force vectors applied to the segment, and if it acts on the axis of the arm
a distance equal to d = YT/ ffrom the joint, the torques at each preceding joint will be
equivalent.

Additional invariance to missing data/occlusions can also be built into this scheme by
dynamically adjusting the model parameters to comply with the data. Hence the mass of
each segment is dynamically set to the number of voxels that project onto the segment, and
the center of mass of each segment is positioned at the center of all of the projected voxels.
In this way the adjustments generated are appropriate to align the model for any data.

The largest problem encountered when using a Jacobian based method is the existence
of singularities [2]. In tracking applications singularities appear because multiple degrees of
freedom are modeled as a sequence of one-DOF joints with links of length zero between the
joints. For example in the two-DOF joint shown in Figure 26, if 05 is rotated to -90 degrees,
a force in the Y2 direction will no longer create a torque. Hence a degree of freedom is lost
and a singularity has been encountered.
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Figure 26: Modeling singularities. The left-hand picture shows the joint at the initial position where
forces along X2 and Y2 directly produce torques around Z0 and Z1. The right-hand picture depicts
a singularity ( 02 = —90 degrees), where a force along Y2 no longer produces a torque.

To achieve robust tracking, any singularities in our model must be avoided. A model with
a two-DOF joint at the shoulder and a two-DOF joint at the elbow can achieve all possible
configurations of the arm (since cylinders are used to model the arm). However, if either joint
is modeled as two one-DOF joints the above-mentioned singularity exists. Looking at Fig-
ure 27 forces in the f; or fy direction should produce a joint torque independently of #; and
5. This can be accomplished by first rotating into a coordinate system where ; and 6, are 0.

To remove singularities in the second joint (elbow), forces along the f5 and fs axes must
also produce joint torques independently of the orientation of the lower arm. Accordingly
the second joint is modeled as four consecutive one-DOF joints. In this way the first two
joint angles account for the bend in the joint and torques are computed about the last two
joints, whose joint angles are at zero. The inertia matrix, M, is consequently created for
torques in the fi, fo, f5, and fg directions. Performing the calculations in this manor not
only removes the singularities but also decreases the complexity of the algorithm because
the Jacobian and inertia matrices are now much simpler.

9.5 Head Tracking

The head model is again anchored at the neck, which is set according to the current torso ori-
entation. Once more the rotations can easily be calculated using normal dynamics: a = 1?/ ;,
where torques are calculated about the base of the head. As before adjustments are calcu-
lated according to d = at?/2.
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Figure 27: Removing singularities. A new arm model is shown, which removes singularities (Rota-
tions are 1-6 are about axes Z1 —6).

9.6 Visual Feedback

While tracking the user, real-time visual feedback is displayed on a screen in the corner
of the workspace. The program can either display the voxels overlaid with colored spheres
to indicate the joint positions and bars connecting the joints or display a human 3D avatar
that mimics the tracking angles (upper-body only). Figure 28 shows the two display options.

9.7 Full Body Tracking Results

The current system is able to collect data, track our model, and provide visual feedback to
the user at 20 frames per second on a single computer at a volumetric resolution of 2in3
voxels. Increasing the resolution to 1in® voxels slows the system to about 9 Hz. In addition
we have also made several movies of the tracked model overlaid on the volumetric data, avail-
able at http://egweb.mines.edu/cardi/3dvmd.htm. These movies show the system both
acquiring and then aligning the model with the data in real-time while the user undergoes
complex motions.

We have also set up an Optotrak [3] system to record ground truth pose information
for a user while in the workspace. The Optotrak system recorded the position of markers
placed upon our user in real-time. From these markers joint angles were be calculated and
compared to the joint angles obtained with our tracking algorithm (attaching markers to the
user does not effect our tracking algorithm). In this way we are able to compare our tracking
results to highly accurate ground truth.

The comparison is taken for the data set named GroundTruth, a movie of it can be seen at
http://egweb.mines.edu/cardi/3dvmd.htm. The average difference between the ground
truth angles and the tracked angles was between 4 and 10 degrees, with a standard deviation
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Figure 28: Real-time visual feedback. On the left is our human 3D avatar, and on the right is a
display of the voxels with spheres and bars to represent the skeleton.

between 2 and 10 degrees. A plot of 2 of the joint angles is shown in Figure 29. These results
are without collision, velocity, or joint limit constraints. We expect the standard deviation
to lower once constraints are incorporated, however we do not expect that the average error
will improve by a large amount. This is due to the both the tracking algorithm itself and
because the data is a visual hull, as explained below.

One interesting aspect of the tracking results is that increasing the resolution to 1 inch
voxels does not increase the tracking accuracy. In fact, the accuray decreases in many cases.
This is probably because the sensor will detect more noise voxels near the boundry of limbs
when smaller voxels are used (larger voxels would require noise spread over a larger area to
be present before they would become active). This result is actually positive in that we do
not need to exend large amounts of time in processing a large number of voxels to achieve
accurate results.

An artifact of the data collection has an effect on the tracking. Since the data only
approximates the visual hull and we are only using a finite number of cameras, tailing exists.
In addition, any concavities in the body will be also be included in the visual hull, as seen
in Figure 31. Accordingly these data artifacts can cause tracking to be inaccurate.

The system does have several limitations. Since self-collision constraints are not yet built
into the system, limbs can get pulled into one another and into the body. Hence when
separate body parts come into contact with one another, the tracking algorithm can fail.
Currently there is no recovery algorithm to regain the pose once the tracking algorithm fails.
These problems are currently being addressed.
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Figure 29: Ground Truth Comparison. The plots show the comparison of tracking results to ground
truth data taken using an Optotrak sensor. This shows the comparisons of the left hip angles. [3].
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Left Knee Angle 2 (horizontal rotation) — actually the twist in the hip
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Figure 30: Ground Truth Comparison. The plots show the comparison of tracking results to ground
truth data taken using an Optotrak sensor. This shows the comparisons of the left knee angles. [3].
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Figure 31: Visual hull - concavities and tailing problems exist in the data. This shows the pro-
gression of a 2D wvisual hull as more cameras are added to the system. The light gray area + the
black object is the visual hull or the common intersection of the projections. The dark gray is the
remainder of the union of the projections, and is eliminated from the visual hull.
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9.8 Conclusions on Full-Body Tracking

We have built a shape-from-silhouette data acquisition and tracking system, which works
in real-time on a single-processor commercially available computer, and designed an easy
means to calibrate the system. The combination of a single computer and relatively simple
calibration makes this system applicable for implementation in a large variety of applications.

The tracking system created for this sensor addresses all of the limitations of previous
systems as listed by Gavrila [1] and the additional limitations presented by the authors.

1. The model is automatically acquired when the user enters the workspace by requiring
the user to stand in an initialization pose.

2. The method is able to deal with occlusion because the forces exerted by voxel data
transfer through the entire system. For instance if no data points project onto the
upper arm, points on the lower arm will still pull both the lower and upper arm into
the correct pose. Also the model parameters, mass and center of mass of each segment,
adjust so the accelerations produced are correct for the current data, but do not affect
the actual model shape.

3. Our process allows for easy incorporation of constraints (see future work below).

4. We are currently setting up an Optotrak [3] to obtain ground truth so that the accuracy
of our tracking can be gauged.

5. Our RTS3 sensor obtains 3D data. By working directly with this data we avoid the
problems of recovering 3D-pose information from 2D data.

6. We are able to work in real-time using only a single commercially available computer.

7. Lastly, we have developed a method to quickly and easily recalibrate data acquisition
system, thereby making it reasonably portable for use in other areas.

The tracking algorithm is designed using sound dynamic and mathematical properties,
and in doing so we have also made several valuable contributions to visual tracking. First of
all, this will be the only human tracking work that we know of which compares its results to
ground truth. Secondly, we have managed to eliminate the known singularities in Jacobian
based tracking of our humanoid model. In doing so, we have also created a general tracking
framework under which tracking can be extended to any rigid articulated model and remove
known singularities. The system can also automatically acquire our model from a simple
initialization pose, track the model, and provide real-time visual feedback on the same com-
puter that acquires the data.
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9.9 Future Work for Tracking

This method provides a good framework to build a robust tracking algorithm. To increase the
robustness of the system we plan to make several improvements to our tracking algorithm.

e Invariance to outliers (erroneous data points) is currently built in through a distance
threshold. However, a more robust algorithm could easily be incorporated, which
applies weighting to the forces. Weights could either reduce or increase the force each
voxel applies to the segment.

e Constraints are not included in the current algorithm. The simplest means to exercise
self-collision constraints is to detect when to body segments are colliding and remove
the portion of the calculated adjustment that would cause the segments to overlap.
Joint limit constraints can also be incorporated through the same scheme.

e The recovery algorithm that reacquires the pose in case tracking gets lost needs to be
modified for the 2"¢ development.

Work is in progress to accomplish all of these improvements to the tracking algorithm.
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